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Abstract A series of 3-substituted piperidincs in emntiomerically pure form has been synthesized from lactatn 3 
by a strrcospacific route involving a postulated rigid amide enolate. This strategy has been applied to the synthesis 
of (+)-stenusine 10. 

As part of a program dealing with the asymmetric synthesis of alkaloids we were interested in the 

development of a convenient method for the preparation of enantiomerically pure 3-substituted piperidines. 

Although several methods exist for the asymmetric synthesis of 2-alkylated piperidines2. to our knowledge there 

is still no general method for the preparation of 3-substituted compounds. Although the synthesis of such 

compounds has been reported3, these methods lack versatility and seem restricted to simple compounds. Their 

application to optically active compounds and polysubstituted derivatives appears to be difficult. Meyer& 

developperi chiral non-racemic bicyclic lactams 1 its precursors of mono and di-substituted lactams. This method 

allowed the preparation of five membered ring derivatives with an excellent diastereoselectivity. However the 

application of this strategy to six-membered lactams was limited by the availability of starting material and the 

lower selectivities obtained during al@lation, especially for the first alkylation. 

Recently we studied a new method for the preparation of bicyclic la&am 2.5 an optically active 

potential acyl iminium ion.6 Surprisingly when this compound was submitted to Meyers alkylation conditions4 

(LDA or s-BuLi, Rx) no substitution was observed. 
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As the presence of a free hydroxyl group is compatible with the above-mentioned conditions,7 we 

decided to explore the reactivity of hydmxy lactam 3 obt&ed in 84 9% yield by reduction of 2 following Meyers’ 

procedure. Deprotonation of 3 in THF solution with 2.5 equivalents of s.BuL,i at -7PC followed by addition of 

alkylhalideledtoEWbstitutedptoducts4(TaMe)in ~togoOdyi&lS~aStheonlyisomrdCttWditlthe 

~Hand~3CNMRspactra(andHPLCforcompound4s).~bemylbromidewasusedesanelectrophilea 

a) Based on isolated products ; b) Determined by HPLC and NMR ; C) Determined by lH and 13C-NMR ; d) 
Isolated as hydrochloride salt. 

NMR studies did not allow the determination of the configuration of the newly created asymmetrk 

center. This problem was solved by an X-ray analysis of the methylated derivative Se9 (Figure). 
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The lactam function of 4 could be reduced using LiAlI&$ without epimerixation at C-3 furnishing 

piperidine derivatives 5 in excellent yield. Hydrogenolysis of 5 was performed with Pearlman catalyst and gave 

the 3-substituted piperidines 6a and 6b isolated as hydrochlorides.~~ 

The dialkylated product 7 was obtained in greater than 97 8 de, via alkylation of methyl derivative 

4a (s.BuLi, PhCH2Br). Although it has beeen impossible to determine the conQuration of the quaternary center, 

it is likely that the second substituent was introduced with the same configuration as the first one. The same 

selectivity was observed by Meyer& 11 during the bis alkylation of bicyclic lactams. 

The excellent diastereoselectivity accompanying alkylation can be explained by a chelation process. 

as previously observed7. Nitrogen is known to be highly pyramidalixed in amide enolates 12. Consequently, the 

N-lone pair in the amide enolate makes a very good electron donor allowing the chelation with lithium and then 

enhancing the acidity of the proton a to the carbonyl. Conformation 8 was then favoumd for steric reasons. 

During the alkylation, the alkyl halide approached the lactam enolate from the less hindered side under 

stereuelectronic control13 leading to the observed stereochemistry. This hypothesis was confirmed by the 

diminution of reactivity and the loss of diastereoselectivity when the alkylation was performed with O-methyl or 

o-silyl delivatives. 

This strategy was then applied to the synthesis of stenusine 1014, a spreading agent of Sfenus 

comma. Alkylation of lactam 3 with cornmerc ially available (S)-(+)-1-bromo-2-methylbutane led to substituted 

lactam 9 in 77% yield as the only isomer detectable in 13C and 1~ NMR. Reduction of the carbonyl function, 

followed by hydrogenolysis furnished a piperidine derivative which was N-substituted by a classical method. 

(2S,3R)-1-Ethyl-3-(2-methylbutyl)piperidine 10 identical to the product described by Enders16 (MS, [CZ]D, lH 

and 13C NMR) was obtained in 46% yield from synthon 3. 
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In conclusion the efficiency of our new method is highlighted by a rapid and convenient synthesis of 

(+)-stenusine 10. The process should provide a practical route to optically pure polysubstituted piperidines due to 

potentialities of the starting oxazololactam 2. 
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